sábado, 16 de octubre de 2010

Traslaciones


Si transformamos el trapezoide violeta mediante una traslación en el trapezoide verde y a continuación realizamos un giro de centro aleatorio F para obtener el trapezoide naranja, observamos que podemos transformar el trapezoide violeta en el naranja mediante un giro cuyo centro queda en la intersección de las mediatrices de las rectas que definen cada par de puntos de los lados las figuras transformadas.

Como consecuencia tenemos que el producto de una traslación y un giro es otro giro.



Si transformamos un triángulo en otro mediante una traslación y este último en otro, mediante otra traslación podemos observar que podremos transformar el primero en el tercero mediante otra traslación, en consecuencia se puede establecer que el producto de dos traslaciones es otra traslación.



Traslación





















This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com



Movimiento que desplaza cada punto según una dirección y sentido dados.



Traslaciones: si un vector se transforma en otro de manera que conserva la misma longitud, dirección y sentido, tenemos una traslación en la que ningún punto permanece invariante salvo que sea una traslación de identidad.


Producto de traslaciones - GeoGebra Hoja Dinámica

Producto de traslaciones





















This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com




Producto de traslaciones:
si aplicamos sucesivas traslaciones diremos que hacemos un producto de traslaciones, el producto de dos traslaciones es otra traslación.

Para trasladar una figura necesitamos saber la dirección que sigue el movimiento y el sentido del mismo, junto con la longitud del desplazamiento.
Una figura obtenida de otra por traslación es una figura idéntica a la original en la que los segmentos homólogos se cortan en puntos de la recta del infinito (la dirección de cada lado de la figura que se ha trasladado) y los puntos homólogos están alineados con un centro de proyección en el infinito que es la dirección del desplazamiento, por lo que tenemos una homotecia afín.











Dadas tres rectas, (en el dibujo en color rojo), dos de ellas paralelas y un triángulo ABC, (en el dibujo en color rosa), se trata de realizar las transformaciones pertinentes para que la figura se convierta en un triángulo cuyos vértices incidan sobre las tres rectas. Trasladamos la figura dada en una dirección cualquiera hasta transformar el segmento CB en el segmento GH, para ello hacemos una recta por el vértice B con una dirección cualquiera hasta que corta a la recta EM en el punto G, por éste hacemos una recta paralela a la recta CB hasta que corte a la recta paralela a GB que pasa por C. Tenemos de esta forma el segmento trasladado GH con su base sobre la recta roja y lo giramos tomando como centro G hasta que corte a la recta DF en el punto I. Hemos por tanto trasladado el triángulo rosa y hemos girado su lado CB hasta obtener su nuevo lado IG a partir del cual construimos el triángulo equilátero IGJ. A partir de ahora sólo hay que trasladar este triángulo de color verde en la dirección de las rectas paralelas dadas, para ello hacemos una recta paralela por J a la recta FD hasta que corte a la recta DE, obteniendo de esta forma el punto K. Por este punto K hacemos dos los paralelas KL KM a los lados JG JI del triángulo verde obteniendo los otros dos puntos M L del triángulo azul buscado.



giro y traslación - GeoGebra Hoja Dinámica







giro y traslación

























This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com

No hay comentarios:

Publicar un comentario